翻訳と辞書
Words near each other
・ Control key
・ Control knob
・ Control limits
・ Control line
・ Control loading system
・ Control lock
・ Control logic
・ Control Machete
・ Control Mastery Theory
・ Control message
・ Control Module Industries
・ Control moment gyroscope
・ Control Myself
・ Control network
・ Control of Asbestos Regulations 2006
Control of chaos
・ Control of chromosome duplication
・ Control of Communicable Diseases Manual
・ Control of fire by early humans
・ Control of International Trade in Endangered Species
・ Control of Major Accident Hazards Regulations 1999
・ Control of the National Grid (Great Britain)
・ Control of ventilation
・ Control of Vibration at Work Regulations 2005
・ Control operation
・ Control order
・ Control panel
・ Control panel (engineering)
・ Control panel (software)
・ Control Panel (Windows)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Control of chaos : ウィキペディア英語版
Control of chaos

In lab experiments that study chaos theory, approaches designed to control chaos are based on certain observed system behaviors. Any chaotic attractor contains an infinite number of unstable, periodic orbits. Chaotic dynamics, then, consists of a motion where the system state moves in the neighborhood of one of these orbits for a while, then falls close to a different unstable, periodic orbit where it remains for a limited time, and so forth. This results in a complicated and unpredictable wandering over longer periods of time.
Control of chaos is the stabilization, by means of small system perturbations, of one of these unstable periodic orbits. The result is to render an otherwise chaotic motion more stable and predictable, which is often an advantage. The perturbation must be tiny compared to the overall size of the attractor of the system to avoid significant modification of the system's natural dynamics.
Several techniques have been devised for chaos control, but most are developments of two basic approaches: the OGY (Ott, Grebogi and Yorke) method, and Pyragas continuous control. Both methods require a previous determination of the unstable periodic orbits of the chaotic system before the controlling algorithm can be designed.

==OGY method==
E. Ott, C. Grebogi and J. A. Yorke were the first to make the key observation that the infinite number of unstable periodic orbits typically embedded in a chaotic attractor could be taken advantage of for the purpose of achieving control by means of applying only very small perturbations. After making this general point, they illustrated it with a specific method (since called the OGY method (Ott, Grebogi and Yorke) of achieving stabilization of a chosen unstable periodic orbit. In the OGY method, small, wisely chosen, kicks are applied to the system once per cycle, to maintain it near the desired unstable periodic orbit.
To start, one obtains information about the chaotic system by analyzing a slice of the chaotic attractor. This slice is a Poincaré section. After the information about the section has been gathered, one allows the system to run and waits until it comes near a desired periodic orbit in the section. Next, the system is encouraged to remain on that orbit by perturbing the appropriate parameter. When the control parameter is actually changed, the chaotic attractor is shifted and distorted somewhat. If all goes according to plan, the new attractor encourages the system to continue on the desired trajectory. One strength of this method is that it does not require a detailed model of the chaotic system but only some information about the Poincaré section. It is for this reason that the method has been so successful in controlling a wide variety of chaotic systems.
The weaknesses of this method are in isolating the Poincaré section and in calculating the precise perturbations necessary to attain stability.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Control of chaos」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.